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In this paper it is shorn that the known theorems of Llapunov [ 1 1 and 
of Chetaev 12 1 concerning stability may be extended to sjstems with 
retard&ion. A criterion of instability in first approximation of motion 
of systems with retardation is given. 

1. Qetaer’s theorem on the instability of motion, and its 
application to systems with retardatioa. Consider equations of 
perturbed motion of the form 

dxi (t) 
-=Xxi(zi(t+8),...,2,(t+8),t) dt (i = l,...,n) (I.11 

where the Xi (x I (0 1, . ..) x,(O), t) are functional8 defined for any piece- 
wise-continuous (i.e., having, at worst, discontinuities of the first 
kind) functions xi(e) defined on the interval - t < 8 < 0, and one has 
‘i (O, . . . . 0, t) P 0. 

Equations (1.1) are the general form of the equations with retardation, 
and are called equations with after-effects. 

In order to determine the derivatives dxi( t )/dt at a given t , it is 
necessary to know not only the L .(t 1 at the instant t, but to know them 
at all instants t on the interv ah-r, t I. Consequently, as in the 
work of Krasovskii I3,4 1 we shall take as an elerant of a trajectory of 
a system with retardation, not the vector function ni(xoMo 1, t ) at the 
instant of time t, but rather the vector-interval trajectory Xi(xo(80 1, 
t + e1, where - I < 8 ( 0. In view of this, the solution may naturally 
be considered as a trqjectory in the function space C. We shall use the 
notation x(t + 0) = I xi,(e)] , where xi*(8), for fixed i and t, represents 
a point in the function space C, i.e. a function defined on the interval 
-r<eGO. 

In the function space the system of equations (1.1) is just a system 

70 



On the instability of the motion of systcas with retardation 71 

of mordinarym differential equations with an operator right-hand side 

131: 

!y = H (2t (a), t) (1.2) 
where 

Zt (8) = 1% (8),..., %f (8)) = (x1 (t + q,..., &I (t + 8)) 

i 

dxf (8) 
R (zt (a)), t)’ --F- 

(-7<890) 

X (xl1 (8)...., znt (a), tl (8 = 0) 

The operator R is defined for t > I + t0 when the initial function 

x0 (0) is piecewise continuous, and it is defined for t > t,, when the 
initial function is differentiable (at the instant t = to by a derivative 

one must understand the right-hand derivative). 

In order to solve the problem of the instability of the motion 

%i(e) E 0 one must: (1) establish instability criteria for unperturbed 

motions when subjected to arbitrary, small in norm, differentiable 

initial disturbances; (2) determine the domain of instability in the 

space of differentiable functions, such that the functions belonging to 

this domain produce solutions of increasing norms, rendering the solution 

x E 0 unstable; (3) determine whether a given possible perturbation of 

the real system belongs or not to the domain of instability. 

In the present paper it will be assumed that all perturbations which 

are differentiable with respect to t and are small in norm are possible 

perturbations. Liapunov’s method permits the determination of the domain 

of instability in function space. Of course, the question as to whether 
a certain possible perturbation of the real system belongs to the domain 

of instability cannot be answered in general, since there are no general 

criteria for the choice of such perturbations. 

Consider the functional u(x1(8), . . . . x,,(e), t), defined for all 

piecewise continuous functions 

in the domain 

1% WY., &l(q) (-778<0) 

IWW<K t>tll (1.3) 

As in Liapunov’s theory, we shall suppose that the functional 

uM8), t) is continuous with respect to x(e) and t. For each continuous 

function x,(e) in the domain (1.31, the functional u(x@), t) is a con- 
tinuous function of the time u(t) = u(xt(8), t). ‘Ihe following defini- 

tions, relative to functionals u, will be employed: 
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(1) A functional u(x(0), t) is said to be positive definite, provided 
that there is a continuous function w(r) satisfying the following condi- 
tions 12 1: 

v ($1 (%...t ~n(W)>~(ll~(~) II) (W 
w(r)r>O, O<r<H, w (0) = 0 

(2) A functional v(x(0), t) a&nits an infinitely small upper bound in 
the domain (1.3), provided that there is a continuous function w1 (r-1, 
satisfying the conditions 

I v @I G%..* %I PI, Q I < WI ( II z (J+) II 1 (1.5) 

%(r)r> 0, O<r<H, w,(O) = 0 

(3) By the domain u > 0 we shall understand the set of piecewise con- 
tinuous functions x(8) which satisfy the conditions 

IMW<H* r(r(qJ)>O, t>t, (1.6) 

In particular, if v is an operator of constant sign, according to the 
definition (l), then the domain v > 0 coincides with the domain (1.3). 

(4) A functional v1 a&its an infinitely small upper bound in the 
domain v > 0 provided that it is bounded in the domain v > 0 and is such 
that for each positive C, chosen arbitrarily, there is a number X, 
different from zero, having the property that if 

then 

t > to, ll~(W< A* v>o (1.7) 

Iv&(%t)l<~ 

(5) A functional vl will be said to be of constant sign in the domain 
v > 0 provided that, for each positive t, no matter how small, there is 
a number I), different from zero, such that whenever x(6) satisfies the 
inequality u > t, one has also the following inequality: 

IewJ)I>rl 
An exeuple of a functional of constant sign is 

vo = kv-/- w @SO) 

where v(x((j)) is a positive functional in the dunain v > 0, or else it 
is identically zero. 

(6) A functional v (x(19), t) is called the lower functional derivative 
of the functional V(X e), t t) with respect to the system (1.2) provided 
that for any solution x,(r3) of the system (1.2) which obeys (1.6) one has 
the equality 
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= v1 (zt (a), t) for A.t ---) + 0 (l-8) 

where the subscript (1.1) indicates the number of the system along whose 
trajectories one calculates the limit Au/At. 

Theorem f. If the differential equation (1.2) of the perturbed motion 
is such that there is a functional v(x(8), t) which is bounded and has 
an infinitely small upper bound in the domain (1.6); and which is de- 
fined for t > to and any arbitrarily small, in norm, differentiable 
function x(0); and also that the lower functional derivative v1(x(8), t) 
with respect to the system (1.2) is positive definite on the domain v> 0 
(see (1.6)), then the unperturbed motion n,(6) E 0 is unstable. 

Proof: Let v(x(O), t) b e a functional satisfying the hypotheses of 
the theorem. lhen in the domain (1.6) one has the inequality 

n(@)J)<L (1.9) 

for some positive constant L. 

It is to be proved that for no given positive number H, < H does 
there exist a number A, sufficiently small, such that the inequality 
]Iz, (e) 11 < A imp1 ies the inequality 11 xt (0) \I < HI for t > t,,. In order 
to do this it is enough to show that, for any given A there is at least 
one function x,(e) for which, at a certain instant t = tl, the equality 

115, (0) 11 = H, holds. 

let us suppose the contrary. 'lhat is, let us suppose that there is a 
sufficiently small number X having the property that if 

lb0GW <A (A < HI) 
then 

IIG (8) 11-C Hi (t 2 to) (1.10) 

let us choose an initial differentiable perturbation x,(e) such that 

t'(r, (B),t,) = r, > 0, II20 (WI = hl < h < Hl (1.11) 

As long as the point n,(6) never leaves the domain (1.6), it follows 
that 

Since the functional v has an infinitely small upper bound in the 
domain v > 0, the conditions v(xt(t9), t) > v(x,,(e), toI= v. > 0 imply 
that, as long as the point x,(e) does not leave the domain v > 0, one 
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will have 11 st (0) \I > p, where p is a positive number. J&t, on the 
d=inH1 >IIs,(O)(( > p, u > uo, the lower functional derivative ul, 
which is positive definite on the domain u > 0, will satisfy the inequal- 
ity ul(x (01, t) ) I,, 
ity (1.X!?) h Id 

where I, is a positive nuaber. lkus the inequal- 
o s, and this contradicts (1.9). From this it follows that 

the motion x,(O) with an initial function satisfying the condition (1.11) 
will, at scme instaut, leave the domain 

II Zt @I II c Hl? 2, (51 P), 0 > 0, t >to 
In view of the continuity with respect to t of x,(f3) there sust be 

at tl such that II%, ,(e)II = H,, and hence the motion x E 0 is unstable. 

(Note. If the initial perturbation is niecewise continuous then the 
following two posslbillties arise for the motion x,(6): 

1. As the time r increases the motion xv (8) belongs to the domain 
u > 0. Then zv(8) will also be differentiable with respect to r and it 
may be asserted that x;(8) belongs to the domain of instability. In this 
case the corresponding initial viecerise continUOU8 function belongs to 
the domain of Instability. 

2. As the time r increases, the motion sv (8) does not belong to the 
domain u > 0. In this case we shall sag that zr (8) and x,(8) do not be- 
long to the doaain of instability (even if uo(zo(B). to) > 0). 

It Is easy to obtain, rrom the theorem Just proved, the following two 
theorems on the stahllltg of the Motion of systems with retardation, 
which are generalizations of the theorems of Liapunov on the stability 
of mot Ion. ) 

Theoren 2 (first theorem of Liapunov concerning stability). If the 
differential equation of the perturbed motion (1.2) is such that there 
exists a functional u(x(@), t) which possesses a positive definite lower 
functional derivative ul(x@), t) with respect to the system (1.21, the 
functional u has an infinitely small upper bound; and if for any t > to, 
by a suitable choice of a differentiable, sufficiently mall in norm, 
initial function x,(e), the functional u(x@), t) has the smae sign as 
ul, then the motion x E 0 is unstable. 

Theorer 3 (second theorem of Liapunov concerning stability). If the 
differential equation of the jperturbed smtion (1.2) is such that there 
exists a bounded functional u(x(g), t) which possesses a lower functional 
derivative ul(n(8), t) with respect to (1.2) of the form: 

q(z(J+), q = hv(r (a), t) -I- w(J:@), t) 

nhere X is a positive constant, and UJ is either identically zero or is 
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a positive &finite functional; and, if the second alternative holds, 

the functional u(x(O), t ) is such that at t > to, by a suitable choice 
of the function x,,(O), with sufficiently small norm 11 x0 (O>il , it can be 
made positive, then the unstable motion x = 0 is unstable. 

2. oh the instability of motion, in the first approxima- 
tion, for systems with after effects. Consider the equation of 
the perturbed motion 

where X(x(t + 0) ,t 1 is a functional, which is defined for piecewise 
continuous functions r(e) which are defined on the interval - r < 8 < 0. 

'lhe integral on the right hand side of equation (2.1) is a Stieltjes 
integral. If dg (0) = 0 for 8 f 0 and 0 f - r, and dq (0) = aI, and 
dq- t-r) = a*, one obtains the following first approximation equation 
with retardation: 

de(t) 
-=ua,x(t)+a,x(t-r) 

dt (2.2) 

We shall suppose that the functional X(x(t + t9), t) satisfies a 
Lipschitz condition with respect to x(O): 

where q is a positive rnsnber, whenever 11 z1 (0) 11 and 11 x2 (0) 11 satisfy 

(2.4) 

‘lhe functional X is supposed to be continuous with respect to t for 
t ) t0 > 0. Consider the characteristic equation 

a(yS-h+i eudq(s)= 0 (2.5) 
--r 

Theorem 2.1. If the equation (2.5) has at least one root possessing a 
positive real part then the undisturbed motion x = 0 of the system (2.1) 
is unstable, no matter what the functional X happens to be. 

(Note 1. h(h) is an entire function, and it say be expanded in a 
power series with majorant ix 1 + A exp r 1 x 1 (here A denotes the total 
variation of the function ~(8) on the interval (4, 0)). 

It is well known that the zeros of an entire function are only finite 
in number in any bounded domain, and that the only limit of these zeros 
is infinity [ 5.4 1. 
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The function A(X) behaves in a similar manner as the polynomial to 
which it reduces in the particular case of the system with retardation, 
(2.2). In fact, the function A(X) has a finite number of zeros on the 
right x half-plane and on the imaginary’ axis. Indeed, in order to see 
this one has only to verify that there is a circle of radius R. outside 

of which 1 A CA) 1 is bounded below by a positive number on the right 
half-plane, including the imaginary axis. 

We have 

lA(h)[=lhl.l -1 +\ ~,,(a+$? 
-T 

where R is sufficiently large, provided that, for A in the right half- 
plane, the following inequality holds: 

--1 

The preceding inequality does indeed hold, because the function 
erp A8 is bounded in absolute value on the right half-plane, including 
the imaginary axis. and hence the absolute value 1 A 1 can be chosen 
sufficiently large, for R large enough. 

Note 2. For the sake of simplicity it will be supposed in the proof 
that the roots with positive real parts are all positive. 1 

Proof: ‘Ihe equations (2.1) of the perturbed motion are equivalent to 

the ordinary differential equation with au operator right-hand side: 

where 

dy =Aq (8) + R (Et (8), t) (2.6) 

1 dxt (VI 
da 

(--<a -co). 

A%,(&))=~ 0 

s xt (8) dq (3) (8 = 0) 1 

\ --+ 

Suppose that the roots with positive real parts are A,, . . . . ‘k* . ..) 

XI. Consider 2 linear fuuctionals, corresponding to these roots: 

fk [Zt (a)] = St (o)- j [ j fL+ - E, Xk 5t (6) & ] d7j (8) (k = i,...,l) (2.7) 
0 

Let us suppose thit the initial functions of the solution are diffe- 
rentiable for - r < t < 0. ‘Ihen the operator equation (2.6) holds for 

t > 0 (for t = 0, by dx/dt is meaut the right hand derivative with 
respect to t 1. Hence the functional (2.7) fulfils 
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fk [AX (8)] = Akfk[+)] (k = I,..., 1) (2.8) 

fk izt (&)I = fk [% (&)I exp lhkt (t > 0) (2.9) 

for differentiable x,(e) and solutions xt (19) of the first approximation 

equations 

(2.10) 

Lenua: If the differentiable function x,(e) satisfies the 1 conditions 

fk [zo (%)I = 0 (k = I,..., i) (2.11) 

then the corresponding solution x,(0) of (2.10) satisfies the I condi- 
tions 

fk [zt (a)] = 0 (2.12) 

for t > 0; and, as t increases, decreases in norm, exponentially, with 

exponents 

where 

and 8 
roots 

Y exp 

fkt = min 1 Re hj [ (i = 1 + I,...) 

the remaining roots A *+ 1, A 1 + *, . . . have negative real parts, 

is positive number less than unity. (‘lhe case of purely imaginary 

can be reduced to the previous one by the transformation 

(B t) = x.1 

‘lhe proof of the lemma may be carried out analogously to the proof of 

‘lheorem 29.1 of Reference 13 1 , because the expression for the semi- 

group-operator on the class of functions satisfying conditions (2.11) is 

given by formula (29.29) of Fkf erence [ 3 I . Consider the subspace L, of 

the space of functions x,(e), consisting of all functions which satisfy 

the conditions 

fkh(e)l =o (k = I,..., I) 

‘hen every element zt (0) of the original function space may be re- 
presented in the form 

Zt (8) = G(9,) + y (z1(8) 6 L Y 6 4 

which decomposes the space into two subspaces: 
(2.13) 

Sk = fk[xt(Q)] tk = I,..., 1)~ 

It is clear that f&z,(e)] = 0, since 

[A’ (hj)]-l/k [eXp hj%] = 
1 (j’ = k) 

0 (i#W 
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'Ihus the system (2.10) leads to the system 

dYk 
dt= hhyk (k = 1, . . . . 1) 

dz, (8) 
- = AZ* (B), 

dt fk bt (a)] = 0 (k = 1, . ..( 1) 

(2.14) 

(2.15) 

&placing x by y and z, in accordance with Equation (2.13), yields 

dyk 
- = hkyk + fk [H (zt (a))] dt (k=l, . . ..l) 52.16) 

- = A&(*) + R (~1(9-), t)- A'(&)-l exp(h, 8)fl[R(z, t)] -. . . dt 

. . . - A’ (W exp (W) II [ R (xt (8)) t) I (2.1'7) 

where 

fk [zf @)I = 0 (k = 1, . . ., I). 

erp h,8 
5/ (8) = 2, (3) - gg yl-- . . . - - 

A‘ (A,) yz 

Obviously, the systems (2.16), (2.17) represent the system (2.6) in 
the subspaces z,(e) and y(t). 

Since the decomposition of x,(6) into y(t) and E (6) is unique, the 
fact that x,(e) = 0 implies that yi = 0 and that t,fe) = 0. 'Ihus the 
solutions of the systems (2.16) and (2.17) exist and are unique, provided 
only that the solution of the system (2.6) corresponding to x,(Q) exists 
and is unique. 

Let us consider the system (2.14). For this system the function u1 
may be constructed as follows: u1 = X,ylF, + . . . + XIylrl. 

The function vI is positive definite in the finite dimensional y sub- 
space. ‘Ihe derivative of ul along an arbitrary trajectory of the system 
(2.14) is positive definite on the subspace y: 

= A, [(A, + Q y&l -!- . * * + AZ rpz + &) Yz?7zl (2.18) 

Further, on the subspace L, for the linear system (2.15), one may con- 
struct (in view of the results of [ 3 I, pp. 191-192) a functional 
v,(z,t6)) satisfying the following conditions: 

c1IIzt WII < 82 (21 69, t) < C2llZf (8) II (2.19) 

Ava 
lim sup 4t ( > (2.13) < - eslh w II for At - f 0 (2.20) 

Iv (6 Ph 0 -v (i PI, 0 I <c,IIG w--z; (J9II (2.21) 
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w&-e cl, c2, cjr c, are positive numbers. 

We now form the functional u*(xt(0), t 1 for the complete system 

follows: 

79 

as 

v* (~t(% t) = 2 If% (Y) - va (21 (% qj (2.22) 

where y and z,(O) are expressed in terms of x,(O) by formula (2.13). 

It is readily verified that the functional v* satisfies all the hypo- 

theses of the first stability theorem of Liapunov for systems with 

after-effects (‘theorem 2). Let us Sow compute the lower functional de- 

rivative of the functional u* with respect to the system (2.6) (or what 

is the same, the systems (2.16) and (2.17)). We have 

-1im inf kC 
At++0 ( ) At (2.6) 

= - (& 2)(2.6,+ A&O sup ($[2.a) = 

where 

<-CllYn-~1121(~)11+~ ma= I lj I II zt (*I II + W II XtW II < 

<(--++q)pt(~)II< -+w+)11 

%IlYll<v/u,<c6IIYII 

c=min{$- minIi hj 2ReXj yi[ (or Ij~[=l).Cs} 

ZmaxIAjI 
D= e, +GI, 

Thus, on account of 

llYII+Il~~~~~ll~ll~~~~~ll~ c> &ID for jzt@)ll< JII 

the inequality 

(2.23) 

it follows that the 
the system (2.6) is 

lower functional derivative of v+ with respect to 
positive definite for sufficiently small 11 zt (0) 11 . 

Consider now the function 
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where 7 is a positive number, so chosen that 11 r,,* (6) 11 is as small as 
is desired. 

To the function x0*(8) 
exp Xi6 (j = 1, 

correspond the functions z,,* (0) t 0, y . = q 

. . . , I) in the spaces L and I, and from (2.18) Ad (2.22) 
it follows that 

Now, the norms of yk and z,(0), from the definitions 
are found to satisfy 

II Yk II < A II 51 w II, II Zt 1% II < B II Zt w II 

where A and B are positive numbers. Let us now estimate 
Taking into account (2.251, (2.19), (2.18), and (2.22), 

(2.24) 

(2.13) and (2.7), 

(2.25) 

the norm of v*. 
we obtain 

II v* II < N II $1 P) 111 N = 1 max {I hj I} 1/Z + c,B (2.26) 

where N is a certain positive number. From (2.26) it is seen that the 
functional u* has an infinitely maall upper bound on any domain 
II st (e) II < Ii, where H is a positive rum&r. 

Thus, the functional u* possesses a lower functional derivative with 
respect to the system (2.6), which is positive definite, in view of 
(2.23). Further, u* possesses an infinitely small upper limit, by (2.26), 
and there exists a differentiable initial function x (e), arbitrarily 
small in norm, for which u* assumes positive values tsee (2.24)). ‘Ihere- 
fore u’ satisfies all the hypotheses of the first Liapunov theorem on 
the stability of motion (Theorem 2). Consequently, the motion x = 0 of 
the system (2.1) is unstable for arbitrary X (fulfilling the required 
conditions). 

(Note 3. It is not difficult to prove the theorem in the cuse of non- 
simple roots Aj with positive real parts. 

Note 4. The theorem concerning the stability of the motion x = 0 is 
valid also for systems of n equations of the form 

j-1 -T 

where dq ii(e) and Xi play roles similar to those of dq (8) and X in the 
system (2.1). The proof of this assertion does not differ essentially 
from the proof of Theorem (2.1). 
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