ON THE INSTABILITY OF THE MOTION OF
SYSTEMS WITH RETARDATION

(0 NEUSTOICHIVOSTI DVIZRENIIA SISTEN S
ZAPAZDYVANIEM PO VRENENI)

PMM Yol.24, No.1, 1960, pp. 55-63

B.N. SHIMANOV
(Sverdlovgk)

(Received 18 November 1959)

In this paper it is shown that the known theorems of Liapunov [1 ] and
of Chetaev [2] concerning stability may be extended to systems with
retardation. A criterion of instability in first approximation of motion
of systems with retardation is given.

1. Chetaev’'s theorem on the instability of motion, and its
application to systems with retardation. Consider equations of
perturbed motion of the form

dz; (t) .
P =X1' (:Cj (t+'9‘),...,$n(t—l—'3),t) (i=1,...,n) (1.1)

where the X;(x,(0), ..., x,(0), t) are functionals defined for any piece-
wise-continuous (i.e., having, at worst, discontinuities of the first
kind) functions 2,(0) defined on the interval - r < 8 < 0, and one has
X0, ..., 0, ¢t)=0,

Equations (1.1) are the general form of the equations with retardation,
and are called equations with after-effects.

In order to determine the derivatives dx;(t)/dt at a given ¢, it is
necessary to know not only the x.(t) at the instant t, but to know them
at all instants ¢ on the interval [t -r, t]. Consequently, as in the
work of Krasovskii [3,4] we shall take as an element of a trajectory of
a system with retardation, not the vector function x;(x,(6,), t) at the
instant of time t, but rather the vector-interval trajectory xi(x,(o,,),
t+ 0), where —~ r < 8 < 0. In view of this, the solution may naturally
be considered as a trajectory in the function space C. We shall use the
notation x(¢ + 0) = { x;,(6)], where x,,(0), for fixed i and ¢, represents
a point in the function space C, i.e. a function defined on the interval
-rg8g0.

In the function space the system of equations (1.1) is just a system
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of *ordinary* differential equations with an operator right-hand side

[31:

T R@®), (1.2)

where
e () = {2y )., Zat ()} = {21 (¢ + 9),..., 2 (¢ 4 D)}
dz, (9)
Rx:(®),0)=)"ds
X (2 (9o, 7, (9), 1) (9 =0)

(—T<9K0)

The operator R is defined for t > r + t, when the initial function
x4(0) is piecewise continuous, and it is defined for t > t, when the
initial function is differentiable (at the instant t = ty, by a derivative
one must understand the right-hand derivative).

In order to solve the problem of the instability of the motion
2;(0) = 0 one must: (1) establish instability criteria for unperturbed
motions when subjected to arbitrary, small in norm, differentiable
initial disturbances; (2) determine the domain of instability in the
space of differentiable functions, such that the functions belonging to
this domain produce solutions of increasing norms, rendering the solution
x = 0 unstable; (3) determine whether a given possible perturbation of
the real system belongs or not to the domain of instability.

In the present paper it will be assumed that all perturbations which
are differentiable with respect to t and are small in norm are possible
perturbations. Liapunov’s method permits the determination of the domain
of instability in function space. Of course, the question as to whether
a certain possible perturbation of the real system belongs to the domain
of instability cannot be answered in general, since there are no general
criteria for the choice of such perturbations.

Consider the functional v(x,(8), ..., x"(o), t), defined for all
piecewise continuous functions

{21 (9),..., 2o (8)) (—<9<0)

in the domain

=z <H, t>t (1.3)

As in Liapunov’s theory, we shall suppose that the functional
v(x(8), t) is continuous with respect to x(8) and t. For each continuous
function x () in the domain (1.3), the functional v(x(8), t) is a con-
tinuous function of the time v(t) = v(x,(6), t). The following defini-
tions, relative to functionals v, will be employed:
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(1) A functional v(x(6), t) is said to be positive definite, provided
that there is a continuous function w(r) satisfying the following condi-
tions [2 ]:

v(@1(8)s 2 (9), ) S0 (|23 []) (1.4)
w(ryr>0, 0<r<H, w(0) =0

(2) A functional v(x(9), t) admits an infinitely small upper bound in
the domain (1.3), provided that there is a continuous function w,(r),
satisfying the conditions

[2 (21 (9),..., 2 (8), ) [ Swn ([lz (9) ) (1.5)
wy (ryr >0, 0<r<H, w; (0) =0

(3) By the domain v > 0 we shall understand the set of piecewise con-
tinuous functions x(@) which satisfy the conditions

E@I<H  2@®.0>0, > (1.6)

In particular, if v is an operator of constant sign, according to the
definition (1), then the domain v > 0 coincides with the domain (1.3).

(4) A functional v, admits an infinitely small upper bound in the
domain v > 0 provided that it is bounded in the domain v > 0 and is such
that for each positive ¢, chosen arbitrarily, there is a number A,
different from zero, having the property that if

>ty Jz (@] <X, v>0 (1.7)
then
[01(z(3). ) <e

(5) A functional v, will be said to be of constant sign in the domain
v > 0 provided that, for each positive ¢, no matter how small, there is
a number 5, different from zero, such that whenever x(0) satisfies the
inequality v > ¢, one has also the following inequality:

[o1(z(3),8) | >7
An example of a functional of constant sign is
VW =Av+w (A>0)
where w(x(f)) is a positive functional in the domain v > 0, or else it

is identically zero.

(6) A functional v,(x(8), t) is called the lower functional derivative
of the functional v(xi@), t) with respect to the system (1.2) provided
that for any solution z,(f) of the system (1.2) which obeys (1.6) one has
the equality
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A A
lim inf (X’t’) =@ @),0) for Atm 40 (1.8)
where the subscript (1.1) indicates the number of the system along whose

trajectories one calculates the limit Av /At.

Theorem 1. If the differential equation (1.2) of the perturbed motion
is such that there is a functional v(x(8), t) which is bounded and has
an infinitely small upper bound in the domain (1.6); and which is de-
fined for t > t;, and any arbitrarily small, in norm, differentiable
function x(6); and also that the lower functional derivative v,(x(8), t)
with respect to the system (1.2) is positive definite on the domain v> 0
(see (1.6)), then the unperturbed motion x,(6) = 0 is unstable.

Proof: Let v(x(@), t) be a functional satisfying the hypotheses of
the theorem. Then in the domain (1.6) one has the inequality

v (z(9),1) < L (1.9)

for some positive constant L.

It is to be proved that for no given positive number H; < H does
there exist a number A, sufficiently small, such that the inequality
[z, (6)]] <A implies the inequality ||z, (6) || < H; for t > t;. In order
to do this it is enough to show that, for any given A there is at least
one function x,(@) for which, at a certain instant t = t;, the equality

|I‘t1(0)|| = H; holds.

Let us suppose the contrary. That is, let us suppose that there is a
sufficiently small number A having the property that if

o ®) ] <N (A< Hy)
then
Ja®)|<H, (=) (1.10)

Let us choose an initial differentiable perturbation xo(o) such that
v (2o (9),2)) = v >0, [ze @) =M <A< H, (1.11)
As long as the point x,(d) never leaves the domain (1.6), it follows

that

t

v (20 (9), 1) vy - Loy (@ (9), ) dt < by (¢t — 1) + v, (1.12)

te

Since the functional v has an infinitely small upper bound in the
domain v > 0, the conditions v(x,(8), t) > v(xy(6), t;)= vy, > 0 imply
that, as long as the point x,(f) does not leave the domain v > 0, one
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will have ||x, (6) || > p, where p is a positive number. But, on the
domain H, >|x,(@)|| >, v > vy, the lower functional derivative v,
which is positive definite on the domain v > 0, will satisfy the inequal-
ity v,(x,(8), t) > 1, where l| is a positive number. Thus the inequal-
ity (l.li) holds, and this contradicts (1.9). From this it follows that
the motion x,(#) with an initial function satisfying the condition (1.11)
will, at some instant, leave the domain

Jz: (®) ] < Hi, v (2 (3), 1) > 0, t>1,

In view of the continuity with respect to t of x,(6) there must be
at ¢, such that ||z, (0)]| = H;, and hence the motion x = 0 is unstable.

(Note. If the initial perturbation is piecewise continuous then the
following two possibilities arise for the motion ‘1(0):

1. As the time r increases the motion x (6) belongs to the domain
v > 0. Then x.(0) will also be differentiable with respect to r and it
may be asserted that ,,(o) belongs to the domain of instability. In this
case the corresponding initial piecewise continuous function belongs to
the domain of instability.

2. As the time r increases, the motion :}(0) does not belong to the
domain v > 0, In this case we shall say that z (6) and ‘0(0) do not be-
long to the domain of instability (even if vo(xo(O). ty) > 0).

It is easy to obtain, from the theorem just proved, the following two
theorems on the stability of the motion of systems with retardation,
which are generalizations of the theorems of Liapunov on the stability
of motion.)

Theorem 2 (first theorem of Liapunov concerning stability). If the
differential equation of the perturbed motion (1.2) is such that there
exists a functional v(x(#), t) which possesses a positive definite lower
functional derivative v,(x(f), t) with respect to the system (1.2), the
functional v has an infinitely small upper bound; and if for any t > t,,
by a suitable choice of a differentiable, sufficiently small in norm,
initial function x,(@), the functional v(x(8), t) has the same sign as
v,, then the motion x = 0 is unstable.

Theorem 3 (second theorem of Liapunov concerning stability). If the
differential equation of the perturbed motion (1.2) is such that there
exists a bounded functional v(x(6), t) which possesses a lower functional
derivative v,(x(8), t) with respect to (1.2) of the form:

v E@),)=20@@@®),)+wx®),)

where A is a positive constant, and w is either identically zero or is



On the instability of the motion of systems with retardation 75

a positive definite functional; and, if the second alternative holds,
the functional v(x(0), t) is such that at t > t;, by a suitable choice
of the function x,(#), with sufficiently small nomm ||z, (6)|| , it can be
made positive, then the unstable motion x = 0 is unstable.

2. On the instability of motion, in the first approxima-
tion, for systems with after effects. Consider the equation of
the perturbed motion

20 { o4+ 9dn®) + X+ 90 @.1)

T

where X(x(t + 6),t) is a functional, which is defined for piecewise
continuous functions x(@) which are defined on the interval — r < 6 < 0.

The integral on the right hand side of equation (2.1) is a Stieltjes
integral. If dn () = 0 for 6 £ 0 and 6 # — r, and dn (0) = a,, and
dg (~r) = a,, one obtains the following first approximation equation

with retardation:
dr (t
tdE ) — a,x (t) + az x(t — ) (2.2)

We shall suppose that the functional X(x(t + ), t) satisfies a
Lipschitz condition with respect to x(@):

[ X (z1(3),0) — X (25(9), ) [ < g2 (8) — 22 (B) ] (2.3
where ¢ is a positive number, whenever ||x; (8) ]| and ||z, (6) || satisfy

g< [l ®[+]z@®)* (@>0 (2.4)

The functional X is supposed to be continuous with respect to t for

t > ty > 0. Consider the characteristic equation
0

AN =—24{ eodq(9) =0 (2.5)

Theorem 2.1. If the equation (2.5) has at least one root possessing a

positive real part then the undisturbed motion x = 0 of the system (2.1)
is unstable, no matter what the functional X happens to be.

(Note 1. A(A) is an entire function, and it may be expanded in a
power series with majorant {A|+ A exp r]A| (here A denotes the total
variation of the function () on the interval (—r, 0)).

It is well known that the zeros of an entire function are only finite
in number in any bounded domain, and that the only limit of these zeros
is infinity [5,4].
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The function A (A) behaves in a similar manner as the polynomial to
which it reduces in the particular case of the system with retardation,
(2.2). In fact, the function A(A) has a finite number of zeros on the
right A half-plane and on the imaginary axis. Indeed, in order to see
this one has only to verify that there is a circle of radius R, outside
of which |A(A)| is bounded below by a positive number on the right
half-plane, including the imaginary axis.

We have
XS

€ 1
IA()\H=|)\I-l —1 +g ';\—dn(a)‘>5R
—_—T
where R is sufficiently large, provided that, for A in the right half-
plane, the following inequality holds:

PEERYS )
)<
—T
The preceding inequality does indeed hold, because the function
exp A0 1is bounded in absolute value on the right half-plane, including
the imaginary axis, and hence the absolute value |A| can be chosen
sufficiently large, for R large enough.

Note 2. For the sake of simplicity it will be supposed in the proof
that the roots with positive real parts are all positive.)

Proof: The equations (2.1) of the perturbed motion are equivalent to
the ordinary differential equation with an operator right-hand side:

PO Ay (9) 4 R (2 (3), 1) (2.6)

where

dz, (v)
—T<d )
7 (—~ <0

Az (3)={o R (z,(3), )=
z (9)dn(9) (9=0),

—T

(—<9<0)
X (z,(9), 1) (8=0)

Suppose that the roots with positive real parts are A}, ..., A, ...,
A ;. Consider ! linear functionals, corresponding to these roots:

0 8
el (D] == (0)—8 [Se(a—a’“‘ xt(E)dE]dn(«‘}) (k=1,...,0) (2.7
—t 0

Let us suppose that the initial functions of the solution are diffe-
rentiable for ~ r < ¢t < 0. Then the operator equation (2.6) holds for
t > 0 (for t = 0, by dx/dt is meant the right hand derivative with
respect to t). Hence the functional (2.7) fulfils
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fr[Az (3)] = Meful2(9)) (k=1,...0) (2.8)
felze ()] = fi [z, ()] exphut  (1=0) (2.9)

for differentiable x,(f) and solutions x,(6) of the first approximation
equations

O gz (9 (2.10)

Lemma: If the differentiable function x,(@) satisfies the l conditions
felzg (3] =0 (k=1,...,1) (2.11)

then the corresponding solution x,(@) of (2.10) satisfies the I condi-
tions

Jelze (3)] =0 (2.12)

for t > 0; and, as ¢t increases, decreases in norm, exponentially, with
exponents
o = min | Re A | (G=1+1,..)

where the remaining roots A; ;, A;, g0 ee have negative real parts,
and 0 is positive number less than unity. (The case of purely imaginary
roots can be reduced to the previous one by the transformation

yexp(Bt)=1x.)

The proof of the lemma may be carried out analogously to the proof of
Theorem 29.1 of Reference [3 ], because the expression for the semi-
group-operator on the class of functions satisfying conditions (2.11) is
given by formula (29.29) of Reference [3 ]. Consider the subspace L, of
the space of functions x,(8), consisting of all functions which satisfy
the conditions

felze (3] =0 (k=1,..,1

Then every element x,(0) of the original function space may be re-
presented in the form

7 (¥ =z® 4y (z(MHEL, ye

which decomposes the space into two subspaces:
(2.13)

exp A 9 exp A9

Y = [z (®)] (=11, x (¥) =2 (9) + A ) Y+ -+ oy (}\) Y

It is clear that f,[z,(8)] = 0, since

(&7 )1 futexprsd) = { 0=
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Thus the system (2.10) leads to the system

dy
—7 = Mk k=1, .. 1 (2.14)

dz, (.‘)) PN B r
= Az (3), Jrlze (3)] =0 k=1, .., 1) (2.15)

Replacing x by y and z, in accordance with Equation (2.13), yields

’;# = Nyk + [ [R (z: (9))] (k=1,...0 1(2.16)
‘( ) Az () + R (1 (9), 1) — A (\) exp (0 9) A IR @, )] —- -
— A" (M) exp (M) [i [R (2 (), )] (2.17)

felz2e ()] =0 (=1, ..., 10

where exp A9 exp )\18

x:(ﬂ)zzl(s)—myr-'“*myz

Obviously, the systems (2.16), (2.17) represent the system (2.6) in
the subspaces z,(6) and y(t).

Since the decomposition of x,() into y(t) and z,(f) is unique, the
fact that x,(6) = 0 implies that ¥y = 0 and that ztz ) = 0. Thus the
solutions of the systems (2.16) and (2.17) exist and are unique, provided
only that the solution of the system (2.6) corresponding to x,(6) exists
and is unique.

Let us consider the system (2.14). For this system the function v,
may be constructed as follows: v, = Ay, ¥, + ... + A)y,;7;.

The function v; is positive definite in the finite dimensional y sub-
space. The derivative of v, along an arbitrary trajectory of the system
(2.14) is positive definite on the subspace y:

(B)re =M1+ T B+ NI+ R ygd (248)

Further, on the subspace L, for the linear system (2.15), one may con-
struct (in view of the results of [3 ], pp. 191-192) a functional
v,(z,(6)) satisfying the following conditions:

caflze ()| <wa (2 (9), 8) <ealz ()] (2.19)
lim sup ( .At)(z o S cslze ()]  for At— 40 (2.20)

|0 (2 (8), 1) — 2 (2t (8), 1) | << cal 2t (B) — 2 (®)] (2.21)
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where ¢, c,, ¢, ¢, are positive numbers.

We now form the functional v*(z,(9), t) for the complete system as
follows:

v (@ (%), ) =217, @) — va (z (), 1) (2.22)

where y and z,(0) are expressed in terms of x,(8) by formula (2.13).

It is readily verified that the functional v* satisfies all the hypo-
theses of the first stability theorem of Liapunov for systems with
after-effects (Theorem 2). Let us now compute the lower functional de-
rivative of the functional v* with respect to the system (2.6) (or what
is the same, the systems (2.16) and (2.17)). We have

—lim mf(A ) ( ! dv‘) — lim inf (— Av’) =
At—++0 t Jos Vo, dt/(ee) Atsto At Jae
1 dvl
= — 7= lim su ( )
Vvl dt (2. G)+ At—>+o P (2. 0)

= Vv 2)\2Rel,y,y1+ lﬂsup( ) +

(2.15)

= S 475 () + 5 (01 + lim [(E)en = (Fasm] <

i=1

< —clyl—clz @)+ L max || 2 (®)]+ cagl (B)] <

<(—c+ D@z @) < — 2 c|x(H)]

where B
Iyl < Vo <eslyl
c =min{?15— minlz A; 2Re); yg}l (or |y|=1), c3}
=1
l b4
=l @IS @ ¢> 2D tor fn®) < 1,

Thus, on account of the inequality

t
At]—lj}:o mf(At>( 2ty T P ®] (2.23)
it follows that the lower functional derivative of v* with respect to
the system (2.6) is positive definite for sufficiently small EFCANI

Consider now the function
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. ! exp A
@)= 2 app" (—T<9<0)
i=1
where 7 is a positive number, so chosen that || z,* @) }| is as small as
is desired.

To the function x,*(f) correspond the functions z,*(6) = 0, yi=1
expA0 (j=1, ..., 1) in the spaces L and I, and from (2.18) and (2.22)

it follows that
V" (% (8)) >0 (2.24)

Now, the norms of y, and z,(6), from the definitions (2.13) and (2.7),
are found to satisfy

Iyl < Az @B, |z ®)] < Bl (8)] (2.25)

where A and B are positive numbers. Let us now estimate the norm of v*.

Taking into account (2.25), (2.19), (2.18), and (2.22), we obtain
[o" ) < N |z ()], N =lmax{| N[}V 2+ c,B (2.26)

where N is a certain positive number. From (2.26) it is seen that the
functional v* has an infinitely small upper bound on any domain
lfz, (@) || < H, where H is a positive number.

Thus, the functional v* possesses a lower functional derivative with
respect to the system (2.6), which is positive definite, in view of
(2.23). Further, v* possesses an infinitely small upper limit, by (2.26),
and there exists a differentiable initial function x,(6), arbitrarily
small in norm, for which v* assumes positive values zsee (2.24)). There-
fore v* satisfies all the hypotheses of the first Liapunov theorem on
the stability of motion (Theorem 2). Consequently, the motion x = 0 of
the system (2.1) is unstable for arbitrary X (fulfilling the required
conditions).

(Note 3. It is not difficult to prove the theorem in the case of non-
simple roots )tj with positive real parts.

Note 4. The theorem concerning the stability of the motion x = 0 is
valid also for systems of n equations of the form
dz; (9) n e
:it = 2 S z; (t +3)d”lij B+ X@E+9), ..., 2, +9), 1)
j=1 —7
where dy ; .(f) and X; play roles similar to those of d7n (6) and X in the
system (2.1). The proof of this assertion does not differ essentially
from the proof of Theorem (2.1).
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